Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Oral Investig ; 28(5): 258, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38637429

ABSTRACT

OBJECTIVES: To investigate the effects of material type and thickness on force generation and distribution by aligners. MATERIALS AND METHODS: Sixty aligners were divided into six groups (n = 10): one group with a thickness of 0.89 mm using Zendura Viva (Multi-layer), four groups with a thickness of 0.75 mm using Zendura FLX (Multi-layer), CA Pro (Multi-layer), Zendura (Single-layer), and Duran (Single-layer) sheets, and one group with a thickness of 0.50 mm using Duran sheets. Force measurements were conducted using Fuji® pressure-sensitive films. RESULTS: The lowest force values, both active and passive, were recorded for the multi-layered sheets: CA Pro (83.1 N, 50.5 N), Zendura FLX (88.9 N, 60.7 N), and Zendura Viva (92.5 N, 68.5 N). Conversely, the highest values were recorded for the single-layered sheets: Duran (131.9 N, 71.8 N) and Zendura (149.7 N, 89.8 N). The highest force was recorded at the middle third of the aligner, followed by the incisal third, and then the cervical third. The net force between the incisal and cervical thirds (FI-FC) showed insignificant difference across different materials. However, when comparing the incisal and middle thirds, the net force (FI-FM) was higher with single-layered materials. Both overall force and net force (FI-FM) were significantly higher with 0.75 mm compared to those with a thickness of 0.50 mm. CONCLUSIONS: Multi-layered aligner materials exert lower forces compared to their single-layered counterparts. Additionally, increased thickness in aligners results in enhanced retention and greater force generation. For effective bodily tooth movement, thicker and single-layered rigid materials are preferred. CLINICAL RELEVANCE: This research provides valuable insights into the biomechanics of orthodontic aligners, which could have significant clinical implications for orthodontists. Orthodontists might use this information to more effectively tailor aligner treatments, considering the specific tooth movement required for each individual patient. In light of these findings, an exchangeable protocol for aligner treatment is suggested, which however needs to be proven clinically. This protocol proposes alternating between multi-layered and single-layered materials within the same treatment phase. This strategy is suggested to optimize treatment outcomes, particularly when planning for a bodily tooth movement.


Subject(s)
Orthodontic Appliance Design , Tooth Movement Techniques , Humans , Biomechanical Phenomena , Treatment Outcome , Tooth Movement Techniques/methods
2.
Orthod Craniofac Res ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38459802

ABSTRACT

OBJECTIVES: To use the finite element method (FEM) to investigate the effect of various attachment configurations and trimming line designs of orthodontic aligners on their biomechanical performance. METHOD: A 3D upper jaw model was imported into 3D design software. The upper right central incisor tooth (Tooth 11) was made mobile, and its periodontal ligament (PDL) and bone structures were designed. Aligners were modelled with three distinct attachment configurations: No attachment, rectangular horizontal, rectangular vertical, and two trimming line designs; scalloped and straight extended, with a homogeneous thickness of 0.6 mm. These models were then imported into an FE software. Simulations were conducted for three different movements, including facial translation, distalization, and extrusion. RESULTS: Forces were recorded at 1.3-2.6 N during facial translation, 1.4-5.9 N in distalization, and 0.0-2.0 N in extrusion. The straight extended trimming line consistently generated higher forces than the scalloped design. Attachments had no significant impact on force components during facial translation but were more effective in distalization and extrusion. The combination of a straight extended trimming line with horizontal attachments exhibited the least stresses at the apical third during distalization, and the highest stresses during extrusion, suggesting superior retention. CONCLUSIONS: Rectangular attachments offer limited benefits in facial translation, but horizontal rectangular attachments can intensify load in distalization and are crucial for force generation in extrusion. Horizontal attachments are preferred over vertical options. Additionally, the straight extended trim line enhances control of tooth movement and can replace attachments in certain cases. CLINICAL RELEVANCE: These findings provide biomechanical evidence and an optimal protocol to guide clinical practice in planning diverse teeth movements. The emphasis is on the influence of attachment utilization and the specific design of aligner trimming lines to enhance control over tooth movement.

3.
J Mech Behav Biomed Mater ; 140: 105741, 2023 04.
Article in English | MEDLINE | ID: mdl-36857974

ABSTRACT

OBJECTIVES: To investigate in a numerical study the effect of the geometry and the extension of orthodontic aligner edges and the aligner thickness on force transmission to upper right central incisor tooth (Tooth 11). METHODS: A three-dimensional (3D) digital model, obtained from a 3D data set of a complete dentulous maxilla, was imported into 3-matic software. Aligners with four different trimming line designs (scalloped, straight, scalloped extended, straight extended) were designed, each with four different thicknesses (0.3, 0.4, 0.5, and 0.6 mm). The models were exported to a finite element (FE) software (Marc/Mentat). A facial 0.2 mm bodily malposition of tooth 11 was simulated. RESULTS: The maximum resultant force was in the range of (7.5 - 55.2) N. The straight trimming designs had higher resultant force than the scalloped designs. The resultant force increases with increasing the edge extension of the aligner. The normal contact forces were unevenly distributed over the entire surface and were concentrated in six areas: Incisal, Mesio-Incisal, Disto-Incisal, Middle, Mesio-Cervical, and Disto-Cervical. The resultant force increases super linearly with increasing thickness. CONCLUSIONS: The design of the trimming line, the edge extension, and the thickness of the aligner affect significantly the magnitude of the resultant force and the distribution of normal contact force. The straight extended trimming design exhibited better force distribution that may favor a bodily tooth movement. CLINICAL RELEVANCE: A straight extended trimming design of an orthodontic aligner may improve the clinical outcomes. In addition, the manufacturing procedures of the straight design are much simpler compared to the scalloped design.


Subject(s)
Mechanical Phenomena , Orthodontic Appliance Design , Finite Element Analysis , Software , Maxilla
4.
J Dent ; 125: 104276, 2022 10.
Article in English | MEDLINE | ID: mdl-36055460

ABSTRACT

OBJECTIVES: To investigate how the stress distribution and forces transmitted from orthodontic aligners to the tooth surface are affected by the geometry and extension of the trimming line. MATERIALS AND METHODS: Thirty-six aligners were thermoformed from Zendura FLX sheets (0.75 mm thick) and divided into four groups based on the design of the trimming line: Scalloped, Scalloped extended, Straight and Straight extended. Fuji pressure-sensitive films were used for pressure measurement. The pressurized films were scanned and evaluated. Pressures and forces were measured over the entire facial surface of an upper right central incisor (Tooth 11) and at 7 different locations [cervical, middle, incisal, mesio-incisal, mesio-cervical, disto-incisal, and disto-cervical]. In addition, the thickness of the aligners at these 7 sites was measured with a digital caliper. RESULTS: The active force ranged from (2.2 to 6.9) N, and the average pressure was (1.6-2.7) MPa. The highest values were recorded for the (straight extended) design, while the lowest values were recorded for the scalloped design. The forces and stresses were not uniformly distributed over the surface. When the values in each area were compared separately, significant differences were found between the different designs in the cervical area, with the scalloped design transmitting the lowest cervical forces. Aligner thickness was drastically reduced (60-75% thinning) over the entire tooth surface after thermoforming. CONCLUSIONS: The straight extended design of aligner's trimming line exhibited more uniform force transfer and stress distribution across the surface than the other designs. CLINICAL RELEVANCE: The trimming line design could have a significant impact on the clinical outcome of orthodontic aligner treatment.


Subject(s)
Orthodontic Appliance Design , Tooth Movement Techniques , Cuspid , Incisor
SELECTION OF CITATIONS
SEARCH DETAIL
...